Pokhara University Faculty of Science and Technology

Course Code: MTH 210 Full Marks: 100 Course title: Calculus II (3-2-0) Pass Marks: 45

Nature of the Course: Theory Total Lectures: 45 hours

Level: Bachelor Program: BE

1. Course Description

The Calculus II is designed to develop the competency of the students in the applications of various mathematical concepts they learned in previous semesters. It is mainly equipped with Vector Calculus, Laplace transform, Multiple integrals, Differential Equations, Fourier Series and with introduction of Partial differential equations. The pre-requisite for this course is Calculus I and Algebra & Geometry. The course will be delivered through lecture method, assignments on practically based engineering problems and class tests.

2. General Objectives

The course is designed to acquaint the students with applications of mathematics in engineering.

3. Methods of Instruction

Lecture, tutorials, discussions and assignments

4. Contents in Detail

Specific objectives	Contents				
Evaluate multiple integrals	Unit I: Multiple Integrals (6 Hours)				
	1.1 Introduction				
	1.2 Double integrals in Cartesian and polar form, Fubini's theorem (statement only), change of order of integration, change of variable from in double integral Jacobian matrix and reduction into Polar.				
	1.3 Triple integrals in Cartesian form and Dirichlet's Integral, use of cylindrical and spherical coordinates to evaluate triple integral.				
	1.4 Application of double and triple integrals to find Area and				
	volume.				
Analyze the concept of solution of	Unit II: Series Solution of Differential Equations and				
differential equations in terms of	Special Functions (6 Hours)				
infinite series as power series.	2.1 Power series method of solution of differential equations.				
	2.2 Legendre's Equation, Legendre's polynomials $P_n(x)$ of . Graph of $P_1(x)$, $P_2(x)$, $P_3(x)$.				
	2.3 Frobenius method. Bessel's equation, Bessel's function				
	$J_{\nu}(x)$ and its properties. Graph of $J_{\nu}(x)$ for $\nu = 1$ and 2				
Apply the integral transform in	Unit III: Laplace Transform and Its Application (8 Hours)				
solving practical problems	3.1 Laplace Transform (LT), Inverse LT, Linearity of LT,				
	LT of elementary functions, inverses and first shifting (s-				
	shifting) theorem. Existence theorem of Laplace				
	transform (without proof) and uniqueness.				
	3.2 Transform of Derivative and Integrals of a function.				
	3.3 Differentiation and Integration of Laplace transform.				

	3.4 Unit step function, periodic function and LT, second shifting (t-shifting) theorem.				
	3.5 Convolution theorem and its application to find inverse.				
	3.6 Application of Laplace transform to find the solutions of				
	ordinary differential equations (IVP).				
Solve higher dimensional	Unit IV: Advanced Vector Calculus (15 Hours)				
(multivariable) calculus problems	4.1 Differentiation of vector function of scalar variable.				
	4.2 Point functions, Gradient, directional derivative,				
	divergence and curl with properties (without proof)				
	4.3 Line integral with physical interpretation and evaluation of				
	line integrals on various path				
	4.4 Line integral, potential function and independence of path				
	4.5 Green's theorem in plane (without proof) and its various				
	applications				
	4.6 Surface integral and evaluation of surface integrals				
	4.7 Stoke's theorem (without proof) and its applications				
	4.8 Gauss Divergence theorem (without proof) and its				
711	applications.				
Illustrate periodic functions of	Unit V: Fourier Series (5 Hours)				
practical importance by infinite	5.1 Periodic Functions, odd and even functions				
trigonometric series	5.2 Fourier series of 2π periodic functions in the interval				
	$(\alpha, \alpha + 2\pi).$				
	5.3 Fourier series of 2 <i>l</i> periodic functions.				
	5.4 Fourier series of odd and even functions, sine and cosine				
	series				
Interpret physical phenomenon by	Unit VII: Partial Differential Equations (5 Hours)				
partial differential equations	7.1 Introduction				
	7.2 Linear constant coefficient equation				
	7.3 Applications in conservation laws, the breaking time,				
	shock waves, nonlinear advection equations, and traffic				
	flow.				
	How.				

Note: The figures in the parentheses indicate the approximate periods for the respective units.

5. List of Tutorials (30 hours)

Tutorial work covers the work to be done in tutorial. This will enable the students to compute the mathematical problems under the supervision of the course leader. The major tutorial works are as follows:

Unit	Unit name	List of Tutorials	Tutorial
			hours
1	Unit I: Multiple Integrals	1.1 Problems on double integral by changing order of integration and reduction into polar.	2 hrs
		1.2 Triple integral with examples on Dirichlet's integrals, use Cylindrical and Spherical	1 hr
		coordinates.	1 hr
		1.3 Problems on area and volume by double and triple integral	
2	Unit II: Series	2.1 Solve Legendre's polynomials $P_n(x)$ of different	2 hrs
	Solution of	order.	
	Differential	2.2 Solve Bessel's function $J_{\nu}(x)$ and their properties.	2 hrs

	Equations and Special Functions		
3	Unit III: Laplace Transform and Its	3.1Problems on Laplace and Inverse Laplace transform of different functions.	2 hrs
	Application	3.2 Solution of IVP using Laplace transform.	2 hrs
4	Unit IV: Advanced Vector Calculus	4.1 Problems on gradient, Normal vector to a surface, Directional derivative, angle between two surfaces.	2 hrs
		4.2 Problems on divergence and curl.	2 hrs
		4.3Problems on line integrals, Exactness and path independence.	3 hrs
		4.4 Problems based on Green's theorem, Stoke's theorem and Gauss divergence theorem.	3 hrs
5	Unit V: Fourier	5.1 Problems on Fourier series in	2 hrs
	Series	$(-\pi,\pi),(0,2\pi)$ and $\left(-\frac{\pi}{2},\frac{3\pi}{2}\right)$.	
		5.2 Problems on Fourier series of odd and even functions, Fourier series in general interval $(-l, l)$.	2 hrs
6	Unit VII: Partial	6.1 Solve partial differential equations and their	4 hrs
	Differential equation	applications.	

6. Evaluation System and Students' Responsibilities

Evaluation System

In addition to the formal exam(s), the internal evaluation of a student may consist of quizzes, assignments, lab reports, projects, class participation, etc. The tabular presentation of the internal evaluation is as follows.

Internal Evaluation	Marks	External Evaluation	Weight	Marks		
Attendance & Class Participation	10%					
Assignments	20%	Semester End Board				
Presentations/Quizzes	10%	Examination	50%	50		
Term exam	60%					
Total Internal	50					
Full Marks: $50 + 50 = 100$						

Students' Responsibilities

Each student must secure at least 45% marks in internal evaluation with 80% attendance in the class in order to appear in the Semester End Examination. Failing to get such score will be given NOT QUALIFIED (NQ) and the student will not be eligible to appear the Semester-End Examinations. Students are advised to attend all the classes, formal exam, test, etc. and complete all the assignments within the specified time period. Students are required to complete all the requirements defined for the completion of the course.

7. Prescribed Books and References

Text Books

- 1. Kreyszig, E. Advance Engineering Mathematics, New Delhi: John Wiley and Sons Inc.
- 2. Stewart, J. Calculus, Early Transcendental. India; Cengage Learning.

References

- 1. Dass, H. K. & Verma R. *Higher Engineering Mathematics*. New Delhi: S Chand Publishing.
- 2. Mishra, P., Mishra, R., Mishra, V. P., & Mishra, M. *Advance Engineering Mathematics*. New Delhi: V. P. Mishra Publication.
- 3. Thomas, G. & Finney, R. Calculus and Analytical Geometry. New Delhi: Narosa Publishing House.